Predictive transport code: status and plans

C.D. Beidler, H. Maaßberg, Yuriy Turkin

Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany

What is available? Status

Activity / Module	Status	Priority	Responsible
Numeric scheme, PDE Solver, Initial framework, (GUI) Scenario Editor must be designed	Ready, used for modeling		IPP, Y. Turkin, W7-X Team
ECRH/ECCD module; TRAVIS code (GUI)	Ready,	high	IPP, N.Marushchenko, Turkin
NBI/NBCD module NBI code	Ready NBI, NBCD needed	high	IPP, Y. Turkin, H. Maaßberg
Neoclassical transport modeling, Neoclassical Database	Ready, coef. for several conf. DB is needed	high	IPP, C. Beidler, H. Maaßberg, Collaboration with PPPL, NIFS, CIEMAT, TU-Graz, KIPT-Kharkov
Magnetic Configuration Database (MCDB)	Ready, testing, filling phase	high	IPP, A.Dinklage, E3-Applied Theory, W7-X Team, XDV
Geometry module (MCONF) MCviewer code (GUI)	Ready	high	IPP, Y. Turkin, A.Werner, & W7- X Team
Equilibrium, Function Parameterization	In good progress	high	IPP, J.Geiger
Anomalous transport	Started	high	IPP, R.Kleiber

Simulation done

- Neoclassical DB initiated
- Neoclassical confinement has been modeled transport dependencies on magnetic configuration

- Current evolution studied: more modeling is needed (W7-X 10sec initially)
- Ray tracing code TRAVIS is coupled with the transport code and used for modeling of heating and Current Drive for X2, X3, and O2 (n>10²⁰m⁻³), self-consistent CD modeling (for current control)
- NBI modeling possible (birth profile, power deposition)
- Modules as stand alone projects -- this concept is realized
- Profile collection initiated (IPP internal network; WIKI page)

Collection of Plasma Profiles

ECRH; configuration scan; Diffusion model: DKES data	abase - Microsoft Intern	et Explorer	
Datei Bearbeiten Ansicht Favoriten Extras ?			A
🕞 Zurück 🔹 🐑 🔹 🛃 🏠 🔎 Suchen 🤺 Favoriten 🤣 🍃	• 🎍 🖸 • 🔜 🚳		
Adresse 🖉 D:\WIKI.W7X-transport.ipp.mpg.de\Transport_Modeling\ECRH_magCont	f_scan\configuartionScan.html		Vechseln zu 🔁 🔁
updated August 2, 2007 updated September 10, 2007	N7 Y		
C D Beidler H Magherg V Turkin			
C.D.Deldiel, II.Waabberg, <u>1. Turkin</u>			
The simulations have been done by TransportCode using Neoclassical Database for the following magnetic configur w7x-lm1, w7x-sc1, w7x-sc1-beta=2%, w7x-sc1-beta=4%	ration: , w7x-hm1		
$X_{anomalous}[m^{2}/s] = 7x10^{18}/n[m^{-3}] \text{ at the edge only}$ small contribution of anomalous diffusion to transport 4MW ECRH at n _e = 0.7·10 ²⁰ m^{-3} on-axis deposition with large E _r >0 in center off-axis deposition with large E _r >0 in center	D ⁰ ano X ^a ano D ⁰ 22 10 ¹ D ⁰ 22 10 ² D ⁰ 12 10 ² D ⁰ 11 10 ³		
off-axis deposition with small E , <0 in center	10 ⁻⁴ 0 0.15 0.3 0.45 r [m]	10 ⁻⁴ 0.15 0.3 0.45	
updated August 2, 2007			
$X_{\text{anomalous}}[\text{m}^{2}/\text{s}] = 7 \times 10^{18} / n[\text{m}^{-3}] \text{ at the edge only}$ small contribution of anomalous diffusion to transport 10MW ECRH at n = 10 ²⁰ m ⁻³	D ^e _{ano} X ^e _{ano} D ^e _w	10 ² D /m ² /s]	
ê de la companya de l		3 Arbeitsplatz	

26

- Continue creating of W7-X profile collection for various parameters/ configurations/scenarios; move to real DB (A.Dinklage, H.Funaba)
- Extend neoclassical DB, attach to Magn. Conf. DB (MCDB)
- Use Func.Param. for equilibrium beta effects are important for ECRH
- Self-consistent modeling with density evolution included: anomalous transport for particle.
- Some means for scenario description; like in real experiment: events/actions/feedback/forward control (Mathlab – Simulink ??)

5.6 5.8 6 6.2

7

(c) O2 at $<\beta \geq 2\%$

5.6 5.8 6 6.2

(d) O2 at $<\beta>=49$

 $\begin{array}{c} 1 \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{1} \\ r_{1} \\ r_{1} \\ r_{2} \\ r_{1} \\ r_$

Benchmark neoclassic

Proposal for benchmarking of thermal neoclassical transport coefficients

Motivation

• Monoenergetic diffusion coefficients are successfully benchmarked

In the frame of International collaboration on Neoclassical transport. C. Beidler, H. Maassberg, PPPL, ORNL, NIFS, CIEMAT, TU-Graz, KIPT-Kharkov

• Time to do testing of thermal/full transport matrix

Motivation

We propose to start benchmarking of thermal neoclassical transport coefficients

1. Numerical experiment using predictive modeling – (IPP Greifswald)

 LHD and TJ-2 teams analyze these profiles using their transport software: DCOM/NNW and MOCA

- We (IPP Greifswald) need this to be confident in our transport modeling
- We are not intent to do a lot of simulations for foreign machines

Neoclassical transport matrix \mathbf{D} is the energy convolution of monoenergetic coefficients produced by DKES / DCOM / MOCA runs.

$$D_{11}^{a} = \frac{2}{\sqrt{\pi}} \int_{0}^{\infty} dx \ x^{1/2} D(x) e^{-x}$$

• Typical file created by running DKES:

contains ~3000 records $D(r, E_r/v, v/v)$

- Interpolation routine (Greifswald) or Neural network technique (NNW)
- Integrating with Maxwell distribution function

Transport matrix depends on plasma profiles

$$\mathbf{D} = \mathbf{D}(r, n_{\alpha}, T_{a}, E_{r}, z, z_{eff})$$

Transport Equations

$$\begin{split} &\frac{\partial n_e}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} V' \Gamma_e = S \ , \\ &\frac{3}{2} \frac{\partial n_e T_e}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} V' Q_e = -E_r \Gamma_e + P_e, \\ &\frac{3}{2} \frac{\partial n_i T_i}{\partial t} + \frac{1}{V'} \frac{\partial}{\partial r} V' Q_i = E_r z_i \Gamma_i + P_i, \\ &\frac{\partial E_r}{\partial t} - \frac{1}{V'} \frac{\partial}{\partial r} V' D_E \left(\frac{\partial E_r}{\partial r} - \frac{E_r}{r} \right) = \frac{|e|}{\varepsilon} \left(\Gamma_e - z_i \Gamma_i \right), \end{split}$$

$$\Gamma_{\alpha} = \Gamma_{\alpha}^{neo} + \Gamma_{\alpha}^{an}, \quad Q_{\alpha} = Q_{\alpha}^{neo} + Q_{\alpha}^{an}, \qquad \alpha = e, i$$

$$\Gamma_{\alpha}^{neo} = -n_{\alpha} \left[D_{11}^{\alpha} \left(\frac{n_{\alpha}}{n_{\alpha}} - \frac{z_{\alpha} E_{r}}{T_{\alpha}} \right) + D_{12}^{\alpha} \frac{T_{\alpha}'}{T_{\alpha}} \right], \qquad Q_{\alpha}^{neo} = -n_{\alpha} T_{\alpha} \left[D_{21}^{\alpha} \left(\frac{n_{\alpha}}{n_{\alpha}} - \frac{z_{\alpha} E_{r}}{T_{\alpha}} \right) + D_{22}^{\alpha} \frac{T_{\alpha}'}{T_{\alpha}} \right],$$

$$\Gamma_{\alpha}^{an} = -D^{an} n_{\alpha}', \qquad Q_{\alpha}^{an} = -\chi_{\alpha}^{an} n_{\alpha} T_{\alpha}' + \frac{5}{2} \Gamma_{\alpha}^{an} T_{\alpha}$$

10

Ihd_boz10.r360q100b004a8020 inward shifted

LHD

Ihd-360n.dk -- neoclassical data calculated with DKES3 by H. Maassberg contains ~2800 records D(r, Er/v, v/v)

Plasma profiles

Have been sent to S. Murakami

Plasma profiles

Curiosity led me to look at $\tau_{\rm E}$ scaling

LHD

Benchmarking of thermal neoclassical transport coefficients

1. Numerical experiment using predictive modeling – (IPP Greifswald)

 LHD and TJ-2 teams use these profiles in their transport analysis software: DCOM/NNW and MOCA